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Nonequilibrium molecular dynamics is used to compute the coupled heat and 
mass transport in a binary isotope mixture of particles interacting with a 
Lennard-Jones/spline potential. Two different stationary states are studied, one 
with a fixed internal energy flux and zero mass flux, and the other with a fixed 
diffusive mass flux and zero temperature gradient. Computations are made for 
one overall temperature, T =  2, and three overall number densities, n = 0.1, 0.2, 
and 0.4. (All numerical values are given in reduced, Lennard-Jones units unless 
otherwise stated.) Temperature gradients are up to VT=0.09  and weight- 
fraction gradients up to Vwt = 0.007. The flux-force relationships are found to 
be linear over the entire range. All four transport coefficients (the L-matrix) are 
determined and the Onsager reciprocal relationship for the off-diagonal coef- 
ficients is verified. Four different criteria are used to analyze the concept of local 
equilibrium in the nonequilibrium system. The local temperature fluctuation is 
found to be tST,~ 0.03T and of the same order as the maximum temperature dif- 
ference across the control volume, except near the cold boundary. A comparison 
of the local potential energy, enthalpy, and pressure with the corresponding 
equilibrium values at the same temperature, density, and composition also 
verifies that local equilibrium is established, except near the boundaries of the 
system. The velocity contribution to the Boltzmann H-function agrees with its 
Maxwellian (equilibrium) value within 1%, except near the boundaries, where 
the deviation is up to 4%. Our results do not support the Eyring-type transport 
theory involving jumps across energy barriers; we lind that its estimates for the 
heat and mass fluxes are wrong by at least one order of magnitude. 
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1. I N T R O D U C T I O N  

The assumption of local equilibrium is a basic and necessary assumption in 
linear irreversible thermodynamics. It enables us to apply the equations of 
equilibrium thermodynamics, such as the Gibbs equation, to l oca l  volume 
elements in a system. The entropy and other thermodynamic properties of 
the system can then be defined in terms of local, intensive state variables. 
The assumption leads to the concept of an e n t r o p y  p r o d u c t i o n  in a system 
subject to irreversible processes. For a binary system with coupled heat and 
mass transport, which we shall consider in this paper, the entropy produc- 
tion per unit volume and unit time is 

VT J Vr( / l , - /12)  (1) 
i f= - J q ' - ~ 2  - 1' T 

where Jq is the heat flux, Jt  is the mass flux of component 1, T and VT 
are the temperature and the temperature gradient, respectively, and /a k is 
the partial specific Gibbs energy of component k. The subscript T 
represents a gradient under isothermal conditions. 

In the linear regime, i.e., for small fluxes and forces, the two inde- 
pendent fluxes are linear combinations of the forces, 

VT 1 
~ V r ( # l  /12) Jq= -- Lqq ~ - -  Lql (2a) 

VT 1 
J l = - L~q -T~  - - LI~ ~ V r ( / t ,  -/~2) (2b) 

Implicit in these equations is a choice of the barycentric frame of reference 
for the fluxes, in which Jl = - J 2 .  Further details of the phenomenological 
basis for this paper are given in Section 2. 

Onsager tlJ assumed microscopic reversibility or local equilibrium in 
the derivation of his reciprocal relations (ORR), L i j =  Lj i  [cf. Eq. (2)]. The 
derivation was based on linear flux-force relationships. Kinetic theory 
indicates that the ORR are valid also beyond the linear regime, t2) while 
Olah states the opposite in his thermokinetic theory. 13'4) Tenenbaum et  

al. ~5~ found local equilibrium and a linear relationship between the heat flux 
and the temperature gradient in their nonequilibrium molecular dynamics 
(NEMD) simulations of heat conduction in a one-component Lennard- 
Jones system. They used temperature gradients as large as 1.8 x 1011 K m -  
MacGowan and Evans t6~ and Paolini and Ciccotti 17~ also found local equi- 
librium for extremely large thermodynamic forces. These results raise 
several basic questions: How can we better quantify what we mean by local 
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equilibrium? Does it follow from observed linear flux-force relationships 
that local equilibrium exists? If the validity of the ORR goes beyond the 
linear regime, can they be more generally explained in terms of molecular 
properties? 

In his discussion of the local equilibrium assumption, Kreuzer c8) con- 
siders volume elements that are small enough so that the thermodynamic 
properties vary little over each element, but large enough so that each 
element can be treated as a macroscopic thermodynamic subsystem. The 
meaning of small and large in this context is not precisely defined. A defini- 
tion and its quantification must be based on statistical mechanics. For 
instance, "large enough" can be quantified by a lower limit on the fluctua- 
tions in the particle number, the temperature fluctuations, or a length scale 
comparable to the molecules' mean free path. If we consider a system sub- 
ject to a temperature field, "small enough" can be quantified by comparing 
the temperature difference over a volume element with its local temperature 
fluctuations. 

N E M D  simulation is a useful tool for obtaining quantitative statistical 
information on a nonequilibrium many-body system. By analogy to equi- 
librium MD simulations, thermodynamic properties and transport proper- 
ties are computed as averages over time in a stationary state. This implies 
that we assume local equilibrium. To what extent this assumption is valid 
can be examined in detail, which is a main topic of this paper. We show 
how N E M D  can provide new information on nonequilibrium systems in a 
way that supplements experimental data. In particular, we shall discuss 
several criteria of local equilibrium and find out if they are consistent. Our 
aim is to contribute to the understanding of nonequilibrium systems. 

Our model system is a supercritical binary mixture with heat and mass 
transport. A suitable size of the control volumes to be examined must first 
be chosen. The Chapman-Enskog solution of the Boltzmann equation 
shows that local equilibrium can be assumed in the dilute hard-sphere gas 
if the temperature variation over a mean free path is much smaller than the 
average temperature in the volume element, tg' 10) For a liquid, the mean 
free path is of the same order as the molecular diameter, and the above 
argument cannot be applied. Following Kreuzer, t81 we consider a control 
volume of length 1, which replaces the mean free path in the gas. The size 
of the control volume is determined from equilibrium fluctuation theory 
and the results of Tenenbaum et al.~5); it is large enough so that the proper- 
ties of the system can be precisely computed and their fluctuations are 
small. Exactly how small cannot be precisely stated, but Kreuzer tS~ suggests 
that 6N/N<~ 10 -2 for a liquid, where N is the number of particles in 
the control volume. Local equilibrium is maintained if 1 IVTI, where VT 
is the temperature gradient, across a control volume is smaller than the 
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fluctuations in T. A combined criterion which would apply to our system 
is therefore (s) 

and 

/IVTI ~<6T (3a) 

6T~  T (3b) 

Tenenbaum et al. (5) discussed a local equilibrium criterion that essen- 
tially states that the local density in a nonequilibrium system must be equal 
(within statistical uncertainties) to the equilibrium value at the same 
temperature and pressure. This relates the concept of local equilibrium to 
the equation of state and use of thermodynamic properties as indicators of 
local equilibrium. Also in this case a suitable size of the control volume 
must be chosen. If it is too small, the statistics of the computed time 
averages is poor; if it is too large, the property of interest is not sufficiently 
uniform across the volume. Based on their calculations, they concluded 
that I is of the order of the intermolecular distance in a crystal lattice of the 
same substance. We apply this criterion to our system and compare it with 
the other criteria. 

Haile ~ suggested, similarly to Orban and Bellemans, (~z) that the 
velocity part of the Boltzmann H-function, 

H = f (v )  In f (v )  dv (4) 

can be used as an indicator of local equilibrium. If the velocity distribution 
function f (v )  is Maxwellian, H is given by its Maxwell value, 

, l E ( m )  ] 
H x = H y = H : = s H M =  ~ In 2 ~ - 1  (5) 

for a one-component system. In Eq. (5), Hx is the contribution to H M in 
the x direction (and similarly for y and z), m is the molecular mass, and 
k is Boltzmann's constant. By comparing H to HM, we obtain a measure 
of the deviation from the Maxwell-Boltzmann velocity distribution of the 
particles. This is also related to the thermodynamic properties; at equi- 
librium H M equals - S / k  for an ideal gas, where S is the entropy. The size 
of the control volume in which the H-function is evaluated must be chosen 
according to the same criteria as those discussed above. 

A final criterion that we consider is inspired by the Eyring rate theory 
for chemical reaction kinetics ~ and the overpotential theory for electric 
current across an interface, i.e., the Butler-Volmer equation. (14) The basic 
idea of the Butler-Volmer equation is that a net charge flux i, i.e., the 
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difference between the unidirectional charge fluxes i § and i -  in positive 
and negative directions, respectively, across the interface is 

zl~o 
i = i + - i  (6) 

where i ~ is the equilibrium value of i § and i - ,  the so-called exchange 
current density, that is, the flux of electric charge in each direction at equi- 
librium. We shall refer to such an equilibrium value of a flux in one direc- 
tion as a unidirectional flux. The value of i ~ is related to the activation 
energy of the current, and A~0 is the driving force of the flux, in this case 
the overpotential. In general, this driving force is a potential difference over 
a distance comparable to a molecular diameter. The factor 1/2 in the 
exponential functions relates to the transport mechanism; if the resistance 
to the flux is caused by a well-defined energy barrier halfway between two 
stable positions, as in a lattice, the barrier height is Ea + ( - ) A t p / 2  in 
positive (negative) directionsJ TM At equilibrium, A~o=0, and therefore 
i=0 .  Linearization of Eq. (6) can be used as a criterion which puts a limit 
on both the flux and its conjugate force. The error made by linearizing 
e X - e  -x  is 1% when x=0 .31  and 10% when x =0.66. The following ques- 
tions are therefore also interesting: Given that linear flux-force relations 
can be used as a measure of local equilibrium, what is the upper limit of 
i/i ~ for the linear range? How does this criterion of local equilibrium 
compare with the other criteria mentioned above? 

The relation between the unidirectional fluxes at equilibrium and the 
L coefficients has been discussed for a one-dimensional Ising system by 
Hill, ~6) in the thermokinetic theory by Olah, ~3) and in general by Caplan 
and EssigJ ~7~ Attempts have been made to use this relation in order to 
understand the lack of linear flux-force relations for ion transport in 
biological membranesJ ~7' 18) 

For our heat and mass transport, the analogous force for the heat flux 
and the mass flux would be AT and ,dr(p~--~2), respectively, where A 
represents the difference across a control volume. A combined criterion for 
a 1% deviation from linearity would by analogy read 

and 

J~ < 0.3 (7a) jo 

J---~q < 0.3 (7b) jqO 
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In Eq. (7), superscript 0 represents the equilibrium unidirectional fluxes, as 
in i ~ above. 

In this work, we apply two different NEMD algorithms, one with 
emphasis on the heat flux and the other with emphasis on the mass flux in 
a binary liquid mixture. One of the algorithms, the "heat exchange" (HEX) 
algorithm, has been reported and discussed in detail by Ikeshoji and 
Hafskjold Itg) and Hafskjoid et al. ~2m We apply the HEX algorithm to the 
different criteria for local equilibrium discussed above. A new "mass 
exchange" (MEX) algorithm will be used in combination with the HEX 
algorithm to compute all four transport coefficients in a binary mixture and 
test the Onsager reciprocal relationships (ORR). The algorithms are 
described in Section 3. 

The calculations are described in Section 4, and the results are given 
in Section 5. A discussion of the different criteria [Eqs. (3)-(7)] is given in 
Section 6. 

2. HEAT A N D  M A S S  FLUX IN A B I N A R Y  M I X T U R E  

We examine the local equilibrium criteria discussed in Section 1 by 
applying the HEX algorithm to an isotope mixture of Lennard-Jones/spline 
particles (see Section 4 for details of the model). 

The thermal conductivity may be defined by solving (2b) for 
Vr(/~ ~ -/.t2) and substituting this into (2a): 

( ,~jl=O=~'~"~ Lqq LII J \VT,]s,=o 
(8) 

The thermal diffusion factor ~2 is defined as 

_(Vln(wt/w2) ~ _ T (VW,~ Llq c~ln w, 

cq2= \ V I n T  Ja~=o wtw2\VTJal=o=Lli  81zl 
(9) 

where the last equation is derived by use of the Gibbs-Duhem equation for 
a binary mixture at uniform pressure, 

1 OPl, 
Vr(pt, /a2) = - -  Vw I (10) 

It) 2 014; 1 

Here, w~ is the weight fraction of component k. The heat flux for nonzero 
mass flux may be written as 

J# = - ';Ls~ =o V T +  q*Jl (11 ) 
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where q* is the heat of transfer, 

q *=Lql Jq+)'a'=~ (12a) 
Lil Jl 

or, alternatively, 

Jq 
,,2b, 

The ratio Lql/Llq is given by 

Lq.~j_l= q* 0 In wl (13) 
Llq ~12 OlAl 

If the ORR is valid, the ratio is unity. The mass flux may be expressed as 

Jl = -pWlD(WzCtl2 V T +  V In wl) (14) 

where p is the mass density and D is the diffusion coefficient, 

L11 c3pl 
D = - -  - -  (15) 

pw2 T Owl 

If the thermal conductivity, thermal diffusion factor, heat of transfer, and 
diffusion coefficient can be computed by NEMD,  Eqs. (8), (9), (12), and 
(15) may be solved for the L coefficients. 

For an ideal mixture, such as a mixture of isotopes, the derivative of 
the partial specific Gibbs energy at zero pressure gradient simplifies to 

c31a, _ kBT (16) 
Owl wl(ml w2 + m2wl) 

The thermal diffusion factor is then 

Ztq (ml w2 + m2 wl) 
0~12 = Zll kBT (17) 

and the diffusidn coefficient becomes 

kB D=Ll l  (18) 
pwl w2(m i w2 + m2 W I ) 
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The heat flux for a binary mixture is related to the internal energy flux 
by 

Jq = J u - ( h i -  h2)J1 (19) 

where hk is the partial specific enthalpy. For an ideal mixture, hk is 
independent of the composition and equal to the specific enthalpy of pure 
component k. In this paper, we consider an isotope mixture with molecular 
masses mk. We then have hk = m,h,,/mk and therefore 

J q = J v - h 2 ( ~ - l )  J, (20) 

At a stationary state where J k  = 0, we have J v  = J q .  Whereas Ju  in general 
depends on a reference state for the potential energy or /~k, Jq does not. 
Moreover, in the absence of viscous forces, Jq is also independent of the 
frame of reference.C21 

3. THE N E M D  A L G O R I T H M S  

The internal energy flux Ju  may be computed by NEMD according 
to t22) 

1 ( N ) 
J u = - ~ , ~  c [�89 (v,--v)--�89 ~ [ ( v , - v ) . F / j ] r  U 

V j=l y#t 
(21) 

where V is the size of the control volume (CV), m; and v~ are the mass and 
velocity, respectively, of particle i, v is the barycentric velocity of the 
system, ~b,- is the potential energy of particle i in the field of all the other 
particles, F 0. is the force acting on i due to j, and r~ is the vector from the 
position of i to the position of j .  This is a local, instantaneous version of 
the macroscopic internal energy flux. 

Equation (21) suggests that the internal energy flux may be interpreted 
in terms of three contributions. The first and second terms are the kinetic 
and potential energy, respectively, carried by a moving particle. The third 
term is the intermolecular energy transfer due to motion of a particle in the 
field of the other particles. 

The mass flux of component k is 

1 
Jk----~ 2 m i ( v i - - v )  

i~CVvk 
(22) 
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where the summation is performed over particles i of type k in the CV. The 
temperature gradient is given in N E M D  by computations of the local 
temperature according to 

N 
3 1 -~NkT=-~ ~. mi(v i -v)  2 (23) 

i e C V  

where N is the number of particles in the control volume. Strictly speaking, 
3N represents the number of degrees of freedom. In each control volume, 
which is an open system, the number of degrees of freedom equals 3N. 
With the fluxes, the local temperatures, and the local compositions, we can 
examine the flux-force relationships. 

Our approach to investigate the ORR is to make two different boundary- 
driven N E M D  simulations, one with the "heat exchange" (HEX) algorithm 
in which J u  is fixed by the boundary conditions and J1 is determined by 
the system, and another with the "mass exchange" (MEX) algorithm in 
which J~ is fixed by the boundary conditions and J u  is determined by the 
system. In both cases, a stationary state is reached, and the system's 
properties can be computed. For the heat exchange algorithm, J~ equals 
zero in the stationary state. 

The HEX algorithm was described in previous papers t19"2~ and will 
only be briefly mentioned here. The MEX algorithm is not described else- 
where, and will be explained in detail necessary for the later discussion of 
the results. A full description of the MEX algorithm will be made in a 

H M 

I 
M H 

iiiii  

i!iI iiiZi  

I_y 

Lx 

Fig. 1. Layout of the MD cell showing the periodic boundary conditions. The different 
regions are: H, where energy is supplied in the HEX algorithm and particles swap from light 
to heavy in the MEX algorithm; L, where energy is withdrawn in the HEX algorithm and 
particles swap from heavy to light in the MEX algorithm; and M, where the transport is 
analyzed. The cell is divided into 32 layers perpendicular to the x axis, some of which are 
shown here. 
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forthcoming paper. In both cases we used a MD cell which was divided 
into 32 layers perpendicular to the x axis as shown in Fig. 1. The layers 
form three regions, marked H, M, and L. Region H has high temperature 
in case of the HEX algorithm and a surplus of heavy particles in the MEX 
algorithm. Region L has low temperature in the HEX algorithm and a 
surplus of light particles in the MEX algorithm. The middle regions were 
used for computations of the local density, temperature, composition, mass 
fluxes, energy flux, energy, and other quantities of interest. 

3.1. The HEX Algorithm 

The energy flux through the system was generated by adding a certain 
amount of kinetic energy to the system in region H and taking out the 
same amount of kinetic energy in region L at each time step. As a 
consequence, the system developed an internal energy flux and a 
temperature gradient. The barycentric velocity of the total system is zero if 
the numerical algorithm conserves the initial zero momentum. 

The velocities of all the particles in region H (L) were scaled according 
to the amount of added (withdrawn) energy, ( - ) A U ,  and shifted in order 
to conserve a zero momentum of the total system. If the velocity of particle 
i before energy addition was v~, then the velocity after energy addition is 

v ,=(1  + c~)v;+ [~ (24) 

where 

tx ~., miv; I~ = - ( 2 5 )  
~mi  

The summation is done over all the particles in region H (L). A specified 
value of AU leads to a quadratic equation in ct: 

( - ) A U = � 8 9  +c~)v;+l~]2--v; 2} (26) 

At stationary state, the x component of the internal energy flux must 
equal half the rate at which energy is added and removed in the hot and 
cold regions, respectively, 

~sign(x) Jv, } 
J v = [  26tLyL._ 0,0 (27) 
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where sign(x) is in + ( - ) in the left (right) half of the MD cell, 6t is the 
time step, and Ly and L~ are the cell dimensions in y and z directions, 
respectively. The internal energy fluxes computed from Eqs. (21) and (27) 
were compared and used as a test of internal consistency of the algorithm. 

3.2. The MEX Algorithm 

The mass flux through the system was generated by changing a 
particle from species 2 (light) to species 1 (heavy) in region H and 
simultaneously from species 1 to 2 in region L at regular intervals, according 
to the specified mass flux. This is essentially the same technique as the 
"particle swapping" algorithm discussed by Sindzingre et aL (23) As a conse- 
quence, the system developed a mass flux and a concentration gradient. 
The velocity of the swapped particle was first scaled so that the particle 
maintained its kinetic energy. This was done in order to avoid a large, local 
source (sink) of kinetic energy when a light (heavy) particle changed type. 
The velocities of all the particles in regions H and L were then scaled and 
shifted in order to conserve the energy and the momentum of each region 
and the total system. If the velocity and mass of the swapped particle s 
before swapping were v' s and m' s, respectively, then the velocity after 
swapping is 

(, ' '2 
= v~ + 1~ (28)  

\ m s /  

where ms is the mass of s after swapping. The velocities of all the other 
particles in each region after swapping is 

v;= (1 + a)v'~+ ~; i # s  (29) 

The velocity shift in Eqs. (28) and (29) is given by 

o~(P + alP) + dP  
I~ = M (30) 

where 

and 

M = ~ m ;  (31) 

P = ~. m~v' i (32) 

A P  = [(m,,m',.) I/2 - m'~] v', (33) 

822/78/I-2-32 
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The summation is done over all the particles (including s) in region H (L). 
The energy conservation in each region leads to a quadratic equation in a: 

a ( 2 + ~ ) E + ( l + ~ ) p  ( P + , J P ) + '  2 �9 ifl M +  A~b==0 (34) 

where 

E = l ~ - -  , ,2 mivi (35) 

and A~bs is the change in potential energy of s due to the swapping. In the 
present isotope mixture, A~b~ is identically zero. 

Since a mass flux is induced by the MEX algorithm, we must establish 
the relationship between the barycentric frame of reference used in the 
phenomenological description, Eqs. (8)-(20) and the frame of reference 
used in the NEMD simulations. The coordinates and velocities of the 
particles are given in the "laboratory" fixed frame of reference, relative to 
the MD cell, as indicated by the superscript [~. In this frame of reference, 
the sum of the diffusive and convective mass fluxes of component k is Jk ~, 

Jk D = p , v ~  (36) 

where p,  is the mass density of component k. At the stationary state, the 
flux in the middle region must equal the source and sink terms in region 
H and L, 

[] ~ sign, m,  } 
J,  =[2 At L,L , O, O (37) 

Here sign, is the sign + ( - ) for species 1 in the left (right) half of the MD 
cell and - ( + )  for species 2 in the left (right) half cell, subscript k 
represents species k, and At is the time between two particle swaps. The 
ratio between the x components of J1G and J~  is 

jc~ 
l,x ml (38) 

J~x m2 

which leads to 

f m2\ [] 
pvx= J~., + J ~ x = t  l --'~l) Jl. x (39) 

where p is the total mass density and vx is the x component of v. The y and 
z components of v are zero. 
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The mass flux of component k in the barycentric frame of reference is 

Jk = pk(V~ - -  V []  ) (40) 

Combination of Eqs. (36), (39), and (40) gives 

Jl-- wl rn2 + w2ml - o _  n(x),  
ml J, -m2~(-~a~ (41) 

where w~ is the weight fraction of species k, and n(x) and p(x) are the local 
number density and mass density, respectively. 

The total energy flux in the laboratory-fixed frame of reference J~  is 

J~=-v ~cv (~miv~ "j=, ~ vi-Forij (42) 

Like the internal energy flux in the HEX algorithm, the total energy flux 
is given by the heat exchange with the surroundings, Eq. (27), at the 
stationary state. If there is no heat exchange, ,I F is zero. This feature of the 
average total energy flux is useful for computation of the internal energy 
flux from Eq. (43), 

1 I(~/niv2 + Ju=JY-- ; v - 
N 

v--�89 ~ v-Fo.r 0. 
j ~ l  

+ ~_ mi(vTv - vZv, -) + mivi. v(vi- v) (43) 

Equation (43) gives a more precise average for Ju  than does Eq. (21). 

4. SYSTEM A N D  C O M P U T A T I O N S  

4.1. Pair Potential  and Reduced Variables 

A binary isotope mixture was modeled with the Lennard-Jones/spline 
potentialt24): 

I 4eu 12_ for r~<rs 

u~ ~176 forf~ rr'<~r<~rc>l rc 
(44) 
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w h e r e  

a n d  

r s = a~  ~ 1.244a U 

67 
rc = ~-~ rs ~ 1.737a/j 

24192  e, 7 
2 a~ 3211 r s 

bu = 387072 e o 
.3 61009 t 

T h e  p a r a m e t e r s  a~j a n d  e o r e p r e s e n t  t he  m o l e c u l a r  d i a m e t e r s  a n d  i n t e r -  

m o l e c u l a r  p o t e n t i a l  d e p t h s ,  r e spec t ive ly .  

Table I. Transport Coefficients for the Lennard-Jones/Spline System ~ 

Run 
no. n* J *  Jl* x 103 2* Ctl2 D*2 q** 

I b 0.1 0.1 0 1.149_+0.002 0.39_+0.02 N/A N/A 
2 c 0.1 0.3636 N/A N/A 4.7 +_ 0.4 0.9 
3 a 0. I 0.5455 N/A N/A 4.9 + 0.3 4.9 _+ 0.5 
4 c 0. l 0.9091 N/A N/A 5.0 +- 0.2 5.4 +- 0.9 
5 e 0.1 1.8182 N/A N/A 4.93 _+_0.03 3.7 +_0.4 
6 ~'f 0.153 0.1 0 1.139-+0.003 0.35_+0.03 N/A N/A 
7 o's 0.153 1.8182 N/A N/A 2.38 +_ 0.01 2.6 +_ 0.2 
8 b 0.2 0.2 0 1.628 _ 0.001 0,60 +- 0.03 N/A N/A 
9 c 0.2 0.3636 N/A N/A 2.4 +- 0.3 10 +_ 1 

10 c 0.2 0.7273 N/A N/A 2.8 +0.2 2.8+_0.2 
11 g 0.2 1.8182 N/A N/A 2.62+0.03 5.7+_0.6 
12 c 0.2 2.7273 N/A N/A 2.60 +_ 0.05 6.6 +_ 0.1 
13 b 0.4 0.3 0 2.639 +_ 0.006 1.19 +_ 0.02 N/A N/A 
14 c 0.4 1.8182 N/A N/A 1.14 +_ 0.02 13.8 ___ 0.7 
15 c 0.4 3.6364 N/A N/A 1.15 + 0.02 11.7 _+ 0.1 

All results are given in reduced Lennard-Jones units. The uncertainties are given as one 
standard deviation. N/A, not available. 

h Average of three runs of 2 million time steps each. 
c One run of 4 million time steps. 
d One run of 8 million time steps. 
" Average of six runs of 2 million time steps each. 
fOverall temperature T * =  1.35. 
g Average of seven runs of 2 million time steps each. 
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All the results are given in "Lennard-Jones units" (denoted by an 
asterisk) except when otherwise stated. 

The thermodynamic states used in this work are listed in Table I. 
Unless stated otherwise, the overall system temperature was T * =  2.0. The 
states are supercritical for the isotope mixture. 

The mixture was equimolar, consisting in most cases of 512 particles 
(256 of each type) in a box of volume V= L, .L ; .L ,  with periodic boundary 
conditions. The box was noncubic, with Ly./Lx = L,/L. , .  = 0.5. The system 
was divided into NL layers of equal thickness and perpendicular to the x 
axis in order to enable computations of the local density, temperature, 
composition, energy flux, energy, and other quantities of interest. For most 
runs, N L was equal to 32. The thickness of each layer is (in Lennard-Jones 
units) 

1 ( 4 N )  '/3 (45) 
t* = \ n* ) 

4.2. The Computa t ions  

All computations were made on an IBM RS6000/350 workstation. The 
HEX and the MEX codes ran at 44 and 27 time steps per CPU second, 
respectively, for 512 particles. Both algorithms conserve total energy and 
momentum to the extent documented by Hafskjold et aL ~'-~ 

Each run with the HEX code included 2,000,000 time steps of length 
f i t*= 0.002, starting from a randomized configuration or a previous run. 
The first 400,000 time steps of each run were discarded to avoid transient 
effects. A temperature drift was usually observed in the beginning of each 
run. If the drift exceeded a certain limit during the first 20,000 time steps, 
or if the initial temperature was not as specified, the velocities were scaled 
(subject to conservation of total momentum) to the set temperature. The 
internal energy flux was computed at each 20th time step, and subaverages 
were taken over 1000 instantaneous flux calculations, i.e., at 20,000-time 
step intervals, and dumped to file for later analysis. Several parallel runs 
were made for each thermodynamic state, as indicated in Table I. The 
statistical analysis was made considering the parallels to be independent. 

In a series of test runs with the MEX algorithm we set J ~  = 0  (no 
energy input or output). A small temperature gradient was established due 
to the Dufour effect. The heat flux was computed from Eqs. (20) and (21), 
assuming an ideal mixture (which is correct for an isotope mixture). 
Parallel runs did not give a satisfactory reproducibility of the heat of trans- 
fer as computed from Eq. (12a). A slight modification of the algorithm, 
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where we thermostatted regions H and L by a simple velocity scaling at 
each time step, enabled us to compute the heat of transfer from Eq. (12b). 
This gave a better reproducibility, and the final runs were made with six or 
more parallels of  2,000,000 time steps each. The runs were otherwise made 
the same way as with the HEX algorithm. 

5. R E S U L T S  

The HEX algorithm develops a stationary state with temperature and 
composition profiles as shown in Fig. 2a for n* =0.1.  The heat flux is 
preset and the mass flux is zero. Similarly, the MEX algorithm gives the 
profiles shown in Fig. 2b. In this case, the mass flux is preset, and the heat 
flux is given by the requirements of the thermostats. On this basis, the 
transport coefficients 2*, ~12, D*, and q* were computed at T* =2.0.  Pairs 
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of data from the two symmetric half-cells were pooled and second-order 
polynomials were fitted to determine the gradients. The resulting data are 
given in Table I. The density dependence of the transport coefficients is not 
the topic of this paper, and will be discussed elsewhere. 

The local temperature, density, and composition are not restricted to 
the preset values for the total cell. A layer in the center of the middle region 
will, however, be close to the overall conditions. Consequently, the condi- 
tions for the reported local properties will deviate only slightly from the 
overall conditions as shown in Table I. 

The temperature profile in Fig. 2a is almost linear in the middle 
region, which means that the thermal conductivity is constant. (The heat 
flux is constant.) 

The transport coefficients are shown as function of number density for 
equimolar mixtures at T* = 2 in Fig. 3. The data on ct12 supplement earlier 
data by Kincaid et al. r and Kincaid and Hafskjold t26~ for the same 
system, but obtained with different boundary conditions (the fuzzy wall 
algorithm). 

The heat flux is shown as function of the temperature gradient at zero 
mass flux in Fig. 4a, and the mass flux as function of the concentration 
gradient, pVwl ,  at zero temperature gradient in Fig. 4b. Both graphs show 
linear flux-force relationships. 

Equations (8), (9), (12), and (15) were solved for the L coefficients, 
given the values of the transport coefficients and the fact that the mixture 
is ideal, Eq. (16). The results are given in Table II for T* =2.0. The main 
features of the L coefficients are: (1) L~ is constant over the studied 
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Fig. 3. The thermal  conduct ivi ty  (2"), mutua l  diffusion coefficient (D*2), thermal  diffusion 
factor (cc'2), and  heat of transfer (q*) as function of reduced number  density for T* = 2.0. 
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Fig. 4. (a) Heat flux as function of the temperature gradient and (b) mass flux as function 
of the concentration gradient, at i1"= 0.1 and T * =  2.0. The data show linear flux-force rela- 
tionships over the entire range we have studied. Both fluxes and forces are given in reduced 
Lennard-Jones units. 

density range, (2) Lql , Llq , and Luq are proportional to the density, (3) Llq 
equals Lul within the combined statistical uncertainties, and (4) Lqq c o n -  

tributes more than 94 % to 2* [cf. Eq. (8)], and the contribution decreases 
with increasing density. 

Three different values of the size of the control volume were examined, 
No= 32, 16, and 8. The fluctuation in the particle number of a selected 
layer in the middle region is shown as function of time in Fig. 5 for n* = 0.1 
and NL = 32. Time averages are given in Table IIIa  for a more extensive set 
of states. Runs with 100,000 time steps were used in all cases. Calculations 
were made for each overall density (0.1, 0.2, and 0.4) in the hottest layer, 
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n*  p*  L*,  x 10 3 L*, L*q L*q Lq,/L,q* * 

0.I 0.055 4.08 + 0.03 0,015+0.002 0.017 4- 0.001 4.66+0.01 0.94-0.1 
0.153 0.084 3.01 4- 0.01 0.008 4- 0.001 0.008 4- 0.001 2.10 4- 0.01 1.0 4- 0.1 
0.2 0.11 4.34 4- 0.05 0.025 4- 0.003 0.029 4- 0.001 6.68 4- 0.02 0.9 4- 0.1 
0.4 0.22 3.78 4- 0.07 0.052 4- 0.003 0.049 4- 0.001 11.23 __. 0.05 1.06 4- 0.06 

UAll results are given in reduced Lennard-Jones units. The uncertainties are given as one 
standard deviation. The temperature is T * =  2.0, except at n * =  0.153, where T * =  1.35. 

a layer in the middle region corresponding to the average system tem- 
perature, and the coldest layer. The fluctuation in a quantity, e.g., the 
particle number, is given by 

6N= [ x;'=' (_N,n_l -[ < N> )2],/23 (46) 

30 

where n is the number of instantaneous values and < ... > represents the 
time average. 

The temperatures in three selected layers at n*=0.1  are shown as 
function of time in Fig. 6 and time averages are given for several states in 
Table Ilia. The local temperature fluctuations are also shown as error bars 
together with the temperature profile for half the cell in Fig. 7. 

20 

10 

0 

Local E q u i l i b r i u m  

Table II. L Coef f i c ien ts  for  the  Lennard-Jones/Spl ine  System ~ 

50000 

Time s,ep 

00000 

Fig. 5. Instantaneous particle numbers in a central layer in region M at n*=0.1 and 
T* = 2.0 as a function of time. 
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Table III. 

Hafskjold and Ratkje 

Averages and Fluctuations in Local Particle Number 
and Local Temperature 

n* t* N 6N 6N[N T* 6T* ~T/T 

a. 32 layers 

0.07 0.85 11.4 3.2 0.28 
(77.1) (8.4) (0.11) 

0.10 0.85 16.3 4.3 0.26 
(122.2) (11.9) (0.10) 

0.15 0.85 24.9 4.3 0.17 
(255.1) (15.7) (0.06) 

0.13 0.68 11.2 2.3 0.21 
0.20 0.68 16.5 3.6 0.22 
0.31 0.68 24.4 4.6 0.19 
0.32 0.54 13.0 3,3 0.25 
0.41 0.54 17.0 3.0 0.18 
0.50 0.54 19.6 3.3 0.17 

b. 16 layers 

0.1 1.71 29.5 4.7 0.16 
0.2 1.36 40.4 5.6 0.14 
0.4 1.08 30.7 3.9 O. 13 

c, 8 layers 

O. 1 3.42 68.6 7.5 O. 11 
0.2 2.71 65.5 7.5 0.11 
0.4 2.16 67.1 5.7 0.08 

2,95 O. 11 0.04 

1.90 0.06 0.03 

1.33 0.04 0.03 

2.99 0.09 0.03 
1.96 0.05 0.03 
1.38 0.03 0.02 
2.61 0.06 0.02 
1.93 0.04 0.02 
1.52 0.03 0.02 

4 i 

2 

2 
E). 
E 

0 I 

0 500000  1000000  

Time step 

Fig. 6. Instantaneous temperatures in the hottest layer (upper curve), a central layer in 
region M (middle curve), and the coldest layer (lower curve) at n* =0.1 and T* =2.0 as a 
function of time. 
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Fig. 7. The temperature profile across half the cell at n * =  0.1 and T * =  2.0. Also shown as 
error bars are the temperature fluctuations in some selected layers. 

Each control volume is in the stationary, nonequilibrium state charac- 
terized by a density, temperature, and composition. For five of the layers, 
we performed equilibrium MD simulations at the local conditions in order 
to compare with the nonequilibrium properties. The results for pressure, 
potential energy, and enthalpy are shown in Fig. 8. For the layers in the 
middle region, there is excellent agreement between the equilibrium MD 
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Fig. 8. Local values of the potential energy (squares), enthalpy (circles), and pressure 
(triangles) computed in a nonequilibrium run at n*=0.1 and T*=2 .0  (open symbols) 
compared with the equilibrium values at the same conditions (solid symbols). The length scale 
of one molecular diameter is also shown. 
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Fig. 9. The ratio between the Boltzmann H-function computed by NEMD and the 
Maxwellian value at the same temperature. The solid and the open symbols represent 
component 1 (heavy) and 2 (light), respectively. 

and N E M D  results. The clear disagreement in region L (the cold region) 
is discussed in Section 6.3. 

The Boltzmann H-function was calculated for each control volume 
and compared to the results H m with a Maxwell-Boltzmann distribution, 
Eq. (5). The results for the x component at n * =  0.1 and T * =  2 are given 
in Fig. 9. The relaxation toward the stationary state distribution as 
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Fig. 10. Relaxation of the Boltzmann H-function, starting from a rectangular velocity 
distribution function, for the heavy {upper curve) and light {lower curve) components. The 
corresponding Maxwellian values at the stationary state are shown as horizontal lines. 
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indicated by the H-function was determined for each component, starting 
from a rectangular velocity distribution. This is illustrated in Fig. 10 for a 
layer in the middle region. 

The internal energy flux, which is preset in the HEX algorithm, was 
also computed from Eq. (21). The local time averages of the flux were in 
good agreement with the preset value, as shown by Hafskjold et al. ~2~ 
Equation (21) gives the instantaneous values and it allows us to determine 
the equilibrium exchange flux jqO and the fluctuation in the heat flux ~Jq. 
The value of J ~  (the unidirectional heat flux in positive or negative x 
direction) was determined from an equilibrium run at n*=0 .1  and 
T* =2.043.525 (in Lennard-Jones units), whereas the largest heat flux we 
used in the nonequilibrium runs was 0.t. This gives Jq/J~ in the 
"worst" case. We found that the fluctuation ~Jq w a s  of the same order as 
J~ The corresponding value for l IVTI/2T is 0.02. 

The value of J~ was determined from the same equilibrium run as 
above to 0.00022 (in Lennard-Jones units), whereas the largest mass 
flux we used was 0.0018. This gives J t / J ~  in the "worst" case. The 
corresponding value for l IV r ( P t -  #2) l /2kT is 0.2. 

6. D I S C U S S I O N  

If the system would show lack of local equilibrium, nonlinear 
flux-force relationships, or violation of the ORR, we expected that this 
would occur at the lowest density, where the molecular mean free path is 
longest. Most of this discussion is therefore based on the data at 17" = 0.1. 

6.1. Size of  the Control  V o l u m e  and 
Part icle N u m b e r  Fluctuat ions 

Tenenbaum et al. ~5~ found that the size of the control volume could be 
chosen roughly equal to the molecular diameter, that is l,* = 1, in order to 
achieve acceptable statistics and local equilibrium. If n * =  0.1, an lx* value 
of unity corresponds to NL = 27 with 512 particles in the total system. The 
experience of Tenenbaum et al. may be compared to Kreuzer's suggestion 
of 6N/N<~ 10 2 with the data in Table III. 

The two criteria for control volume size are not independent. The local 
particle number N is proportional to /* and 6 N / N  is of order 1/N ~/2. The 
fluctuation is related to the system's compressibility by 

N (47) 
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where Xr is the isothermal compressibility. One may therefore expect that 
the ratio 6N/N becomes smaller as l* becomes larger for constant T* and 
n*. This is also observed. There also seems to be some variation across the 
cell (approximately constant pressure, but changing temperature and 
density). This is consistent with Eq. (47). For n* =0.1, 6N/N is somewhat 
larger in the small volume elements than in the large, and a typical ratio 
is 0.2. From our data for the overall compression factor for the entire 
system, Z =  PV/NkT, at T * =  2 and three densities, we have estimated the 
isothermal compressibility of the system. Note that this is not the local 
value, but the thermodynamic property of the system. This gave 6N/N.~ 
(0.97/N) ~/2 at n*=0.1,  which is in excellent agreement with the data 
reported in Table III. 

These results show that 6N/N depends weakly on the size of the 
control volume. Even for the largest control volume, 6N/N is an order of 
magnitude larger than Kreuzer's suggestion. The 512-particle system with 
NL= 32 gave fluctuations that are consistent with the thermodynamic 
results, and the control volume must from this point of view be considered 
sufficiently large. Our largest control volume is about three times larger 
than that used by Tenenbaum et aL ~5~ 

In order to further examine the effect of system size on the particle 
number fluctuation, the number of particles was increased from 512 to 
4096, keeping Ly/Lx= LJLx = 0.5. This increased l* by a factor of 2 and 
the average particle number by a factor 8 compared to the numbers given 
in Table III. A system with 4096 particles is somewhat large for production 
runs at the workstations we used, both because the computation slows 
down (to 0.8 time steps per CPU second without optimization of the code 
for the larger system) and because the larger system requires longer time to 
reach a stationary state. A 1.5 million-time steps run was made, however, 
for n * =  0.1. Fluctuations in the particle number were determined from the 
last 100,000 time steps. The results are given in parenthesis in Table III. 
The particle number fluctuation was reduced by a factor 3, which brings 
the control volume size in better accordance with Kreuzer's suggestion, ca) 
Again, this is in agreement with Eq. (47). The size of the control volume 
therefore does not seem to be critical in the cases we have studied. Our 
findings support the experience of Tenenbaum et aL ~5) that 1 " ~  1 is 
reasonable, even if the lowest density we studied is low compared to a 
typical liquid density. 

Our conclusion is that Kreuzer's suggestion is too conservative and 
that the reduced fluctuation in the particle number, and accordingly better 
statistics by increasing the system size, does not compensate for the draw- 
backs mentioned above by the size increase. The relatively large fluctuation 
in particle number is a warning that average quantities will require large 



Local Equilibrium 487 

runs to achieve acceptable statistics, which indeed turned out to be the case 
in our runs. For practical reasons, we have therefore based most of our 
runs on the observation by Tenenbaum et aLr and used 512 particles with 
NL = 32 for the production runs. 

6.2. The Linear Regime and Val idity of the 
Onsager Reciprocal Relations 

Some of the calculations in this work can be seen as attempts to 
violate conditions of local equilibrium. The attempts were made because 
criteria for local equilibrium can only be tested by changing from local 
equilibrium to nonequilibrium conditions. The gradients in the algorithms 
we have used are limited by the condition that the temperature in the 
coldest layer must be positive and the mole fractions must be in the 
allowed range, [0, 1 ], in regions H and L. This leads to V T <  4T/Lx and 
Vxl < 2/Lx. These inequalities apply to the instantaneous values, and the 
averages will be more severely limited. Moreover, the system will enter into 
a solid-fluid two-phase state if the temperature in the cold region becomes 
too lOW. (19) As shown in Fig. 4, we have not been able to go beyond the 
linear regime. The results that are clearly in the linear regime provide 
satisfactory precision for the thermal conductivity and the diffusion coef- 
ficient. The data given in Table II show, however, that the cross-coefficients 
are not equally precise, because they represent relatively small contribu- 
tions to the fluxes in stationary state. 

The gradients are extremely large from an experimental point of view. 
For instance, our largest temperature gradient corresponds to a 4% 
change in T over one molecular diameter. The largest temperature gradient 
applied in this investigation is thus so large that it represents a situation 
which must be difficult, if not impossible, to realize in practice. 

The results of Table II indicate that the Onsager reciprocal relations 
are valid in the middle region of the cell, despite the extreme temperature 
gradient applied. We must point out, however, that there is a discrepancy 
between our data for the thermal diffusion factor and those of Kincaid 
and Hafskjold ~26~ (using the fuzzy-wall algorithm) at n*=0.1  and 0.2. 
Ikeshoji tz7) has simulated the same system with both algorithms in inde- 
pendently written codes, and confirmed that there is a discrepancy between 
the two methods. It is therefore unlikely that the discrepancy is due to a 
programming error. In the HEX algorithm, Ikeshoji t2v~ found that the equi- 
partition princilJle is not satisfied in regions H and L at n * =  0.1, probably 
because the heavier (slower) particles stay in these regions longer than the 
lighter particles do. The temperature profile near regions H and L is there- 
fore steeper for the heavier than for the lighter component. This effect is 
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much less pronounced in region M, but it may have an impact on the value 
of the thermal diffusion factor and the analysis of the ORR. This problem 
does not arise for n* = 0.4 or for the other transport coefficients, and there- 
fore it will not affect most of the conclusions reached in this work. This 
methodological problem will be more thoroughly discussed in a forth- 
coming paper. 

The discrepancy between the equilibrium and the nonequilibrium ther- 
modynamic properties in the coldest layer shown in Fig. 8 made us suspect 
that the ORR might not be valid here. When the overall conditions of the 
cell were changed to the values of this layer, the ORR were verified also 
here, as shown in Table II. But uncertainties of the calculations are large, 
and a violation of the ORR may be masked. 

MacGowan and Evans t6) and Paolini and Ciccotti t7) have reported 
results for coupled heat and mass transport in Lennard-Jones systems 
corresponding to an equimolar, liquid argon-krypton mixture. MacGowan 
and Evans found strong nonlinear flux-force relationships, but their lowest 
gradients were two orders of magnitude larger than our highest gradients. 
They found ORR to be valid, based on extrapolation of the flux-force 
relationships in the linear regime to zero forces. Paolini and Ciccotti 
also reported data for Llq and Lql in the linear regime, close to where 
MacGowan and Evans found onset of nonlinearity. They also verified the 
ORR. In both reports, the uncertainties were comparable to ours (8 % in 
the ratio Lql/L~q at  n*~0.7 ,  whereas we have 6% at n*=0.4) .  The 
different algorithms are complementary in that the MacGowan-Evans 
algorithm is better suited to explore the nonlinear regime, whereas our 
algorithm seems better (i.e., more precise estimates) for the linear regime. 

Our results for the Onsager reciprocal relationships (Table II) do not 
give any new information compared to the findings of MacGowan and 
Evans, and Paolini and Ciccotti. The question of the validity of the ORR 
outside the linear regime is still not solved. At this point we may thus still 
speculate that ORR are valid beyond local equilibrium, even if originally 
proven for local equilibrium. 

6.3. Thermodynamic  State Functions in a 
Stat ionary State Transport  Process 

Given that the gradients of the system are severe, it is remarkable to 
see that the criterion of local equilibrium formulated by Tenenbaum et 
al. ~5) is fulfilled (see Fig. 8). It appears that the only discrepancy generated 
between the system properties and the corresponding value given by an 
equilibrium state function is obtained for the pressure in the coldest layer 
of the cell. The properties of the coldest layer discussed in Section 6.2 show 
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that the effect is a boundary effect rather than a consequence of the condi- 
tions. Tenenbaum et al. also found that the criterion was satisfied under 
similar conditions, except in their hottest layer. They ascribed this to a 
boundary effect. 

The validity of Tenenbaum's criterion has an important consequence: 
We may use the basic equations of thermodynamics to describe stationary 
state systems with transport even under experimentally extreme conditions. 

This conclusion is further strengthened by the results for the 
Boltzmann H-function of the system. The results for the H-function of the 
lowest densities of Table II, having the largest uncertainties in the Onsager 
reciprocal relations, show agreement within 3 % with the results of an equi- 
librium Maxwell-Boltzmann distribution, as shown in Fig. 9. Being an 
integral of the velocity distribution, this agreement does not prove that 
the velocity distributions in the control volume is identical to a 
Maxwell-Boltzmann distribution. The sensitivity of the H-function to 
variations in the velocity distribution is therefore interesting. 

The H-function relaxation to stationary state distribution starting 
from a rectangular distribution of velocities was quite rapid, within some 
4000 time steps at the most (Fig. 10). The relaxation of the heavy particles 
(component 1) is faster in the cold region than in the hot region (data not 
shown). This can be understood from the fact that the intermolecular 
energy transfer by interactions of this component contributes more at the 
cold side compared to the hot side. t-'~ At intermediate densities (n*=  0.4), 
component 1 exchanges more energy with its neighbors than component 2 
does in the cold region, whereas the opposite is true in the hot region. 

Our results confirm the discussion by Haile II'l in that the H-function 
is capable of measuring a deviation from a Maxwell-Boltzmann distribu- 
tion. The relaxation time of the H-function is short compared to the time 
used to compute averages of thermodynamic functions in every volume 
element of the system, but long compared to a time step. The data show that 
the time-averaged H-function is not very sensitive to external  constraints 
(i.e., gradients) imposed on the volume element, and it is consistent with 
the other criteria discussed here. 

In a recent paper on NEMD simulations of an isotope mixture at 
higher densities, we speculated that the system was not in local equilibrium 
in the regions of the heat source and sink, possibly because it was unable 
to dissipate the exchanged energy at a sufficient rate/~9"-'~ The relaxation 
rate of H confirms this mechanism. 

The instantaneous H-function is clearly sensitive to the velocity 
distribution, as shown in Fig. 10. The reason why this does not show up 
in the time average can be understood from the following argument: When 
energy is pumped into (out of) the system in region H (L) at every time 

822/78/1-2-33 
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step, one might expect the velocity to become non-Maxwellian. If, however, 
II is small compared to (I +~)v~ [cf. Eq. (24)], the velocity distribution 
will preserve its Maxwellian form even if the system is excited. 

6.4. Flux-Force Relationships f rom Local Equilibrium Criteria 

The fluctuation criterion of Kreuzer, Eq. (3a), is not very specific. The 
value of 6TIT in this investigation is everywhere higher than 0.01 (i.e., 1% 
deviation in the computed averages), but not by very much (see Table III 
and Fig. 7). The highest value (0.04) is obtained for the lowest density. The 
temperature fluctuation is related to the heat capacity at constant volume 
cv by 

6T ( k_..~_'] 1/2 
T - \ N c v ]  (48) 

We estimated the heat capacity from five equilibrium runs at n*=0.1 
around T*=2.0,  and numerical differentiation. This gave 6T/T.~ 
(0.6IN) l/z. The fluctuations reported in Table III are much smaller than 
expected from the heat capacity of the equilibrium system. 

We can therefore conclude that 6T/T~O.03 can be used as a more 
specific fluctuation criterion at n*=0.1 and T*=2.0.  This is fulfilled 
everywhere in the cell with NL = 32. We expect that this conclusion is 
equally valid at n*=  0.2 and 0.4. 

The variation in 6T/T across the cell is interesting. The fluctuation in 
T in any control volume has, as shown in Fig. 7, about the same 
magnitude as the difference in average temperature between two adjacent 
layers, except in the coldest layer. This property may be important for the 
validity of linear flux-force relations because the energy level of the next 
step in the transport process must be within reach by excitation of the 
molecules involved. This gives a certain continuity in the transfer of energy, 
and is therefore a physical concept behind linear transport equations. The 
exception to this in the low-temperature layer is another indication of lack 
of local equilibrium in this region. 

The criteria for local equilibrium represented by Eqs. (7) extend 
Kreuzer's criterion (IIVTI/T<~fT/T~I). The condition Jq /J~  is 
implied, consistent with linear flux-force relations. In our case, 
l [VTI/2T.~O.02 at n* =0.1 with NL=32, which agrees well with the tem- 
perature fluctuation, and linearization seems well justified. If the analog of 
the overpotential theory is right, this would correspond to jq/jO~O.02. 
The directly computed value is 0.2, however. Similarly, the largest gradient 
in chemical potential (composition) gives l JVr(#~--/lz)l/2kT'~0.2, which 
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still justifies linearization. This would correspond to j~ / jo  ~0.2, whereas 
the computed value is 8. Both the heat flux and the mass flux are under- 
estimated by at least an order of magnitude. 

These results taken separately both indicate that we are outside the 
range of linear flux-force relationships, while the results discussed in 
Section 6.2 clearly show that this is not the case. Possible explanations are 
that its theoretical foundation is wrong or that Eq. (7) does not apply to 
our case. The foundation is semiempirical and limited to a transport 
mechanism for a single process with a well-defined energy barrier. This is 
not the case for our fluid system. MD simulations have shown that even 
diffusion in solids cannot be explained in terms of this mechanism. (2s) 
Furthermore, we consider here coupled transport processes. The total 
system then transports heat more effectively and with less entropy produc- 
tion, which may be one explanation for an extended range of linearity. This 
can be seen from 

a _(Lq q LqjLlq (VT  2 (Lql-tlq j 1 V T  j2 (49) 

which is derived from Eq. (1) by using Eq. (2b) to eliminate the force 
V r ( / ~ -  I~2)/T. The second term at the right-hand side of Eq. (49) vanishes 
due to the ORR. At stationary state with Jl  = 0, the third term vanishes. 
The entropy production is smaller for the inhomogeneous mixture than for 
the homogeneous mixture with the same VT/T, because Lqq is reduced to 
Lqq-LqlLlq/Zxl. The reduction in tr and Jq is small (6%), however, 
which is not consistent with an order-of-magnitude error in jq/jO. 

6.5. General Comments  

One practical result of this work is that the equilibrium exchange 
flux (or the unidirectional flux) can be equated to the fluctuation in the 
stationary state flux value. 

One might argue that the present MD simulations cannot violate 
microscopic reversibility and the ORR because of the inherent reversibility 
in Newton's equations of motion. In a NEMD algorithm, it is the boundary 
conditions that introduce the irreversibility, and the system as a whole is 
non-Newtonian. A particle sufficiently apart from the boundaries will 
behave Newtonian-like and obey microscopic reversibility. By "sufficiently 
apart" we mean "that its memory of the boundaries must have been lost 
during the diffusion, and the intermolecular energy transfer contribution to 
the heat flux must be small. A thermal shock wave, for instance, would not 
satisfy this. 



492 Hafskjold and Ratkje 

The present analysis was performed on the problem of coupled trans- 
port of heat and one independent mass component. There are good reasons 
to believe that the discussion of this system applies to other cases, as the 
criteria used are of general nature; some are partly inspired from the theory 
of overpotentials. We shall proceed with this work to investigate the 
coupled transport of charge and mass from the same perspective, using 
parts of the scheme developed in this article. 

7. C O N C L U S I O N S  

A binary mixture of isotopes with mass ratio ml/m,_ = 10.0 has been 
studied in a system which transports heat and mass. Within the context of 
the accuracy of the present N E M D  simulations, the following conclusions 
can be drawn from the study: 

�9 Kreuzer's recommendation for the control volume size, 6N/N ~ 10-2, 
is too conservative for the cases we have studied. Our data support the 
findings of Tenenbaum et al. that the thickness of the control volume can 
be of the order one average intermolecular distance. 

�9 Under conditions of a high temperature gradient, equilibrium ther- 
modynamic properties can be calculated for all local volume elements of 
the cell, except near the boundaries. This implies that the basic equations 
of thermodynamics can be used to describe systems under severe gradients 
in the stationary state. 

�9 Away from the boundaries, the Boltzmann H-function of the system 
is consistent with the Maxwell-Boltzmann distribution within 1%. The 
relaxation of the H-function, typically within 4000 time steps, lends further 
support to the result that the local volume elements in the stationary state 
system can be described by equilibrium thermodynamics. 

�9 The temperature fluctuation was found to be 6T/T~,O.03. This value 
is in agreement with the criterion proposed by Kreuzer (6T/T~ 1). 

�9 A criterion inspired by the overvoltage theory has been examined. 
The ratio of a net flux and the equilibrium exchange flux is here linked to 
a condition for linear flux-force relationships. This criterion indicates that 
we are in the range of linear flux-force relationships in the present 
investigation, which is consistent with our data, It gives, however, estimates 
for the fluxes that are off by at least one order of magnitude. The effect of 
coupling between heat and mass transport gives an extension of the linear 
regime of the transport process. 

�9 Within uncertainties given by the calculations, the Onsager reciprocal 
relations are valid for the system. 
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�9 The NEMD analysis has proved a useful tool in obtaining answers 
to questions regarding criteria on local equilibrium. Some of the computed 
quantities, i.e., the equilibrium exchange flux, cannot be obtained 
otherwise, e.g., from experiments. The application of NEMD may therefore 
contribute to making phenomenological descriptions less dependent on 
experiments. 

ACKNOWLEDGMENTS 

We gratefully acknowledge John M. Kincaid for discussions during 
the development of the MEX algorithm and for checking some of our 
computer code and data, and Tamio Ikeshoji for repeating some of our 
runs with his independent code. 

REFERENCES 

I. L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev. 37:405-426 (1931). 
2. R. M. Velasco and L. S. Garcia-Colin, The kinetic foundations of non-local non- 

equilibrium thermodynamics, J. Non-Eq,dlib. Thermodyn. 18 (1993), in press. 
3. K. Olah, Thermokinetics (an introduction), Periodica Polytechnica Chem. Eng. 31:19-27 

(1987). 
4. K. Olah, Thermostatics, thermodynamics, and thermokinetics, Acta. Chim. Hung. 

125:117-130 (1988). 
5. A. Tenenbaum, G. Ciccotti, and R. Gallico, Stationary nonequilibrium states by 

molecular dynamics. Fourier's law, Phys. Rev. A 25:2778-2787 (1982). 
6. D. MacGowan and D. J. Evans, Heat and matter transport in binary liquid mixtures. 

Phys. Rec. A 34:2133-2142 (1986); see also D. J. Evans and D. MacGowan, Addendum 
to "Heat and matter transport in binary liquid mixtures," Phys. Rev. A 36:948 (1987). 

7. G. V. Paolini and G. Ciccotti, Cross thermotransport in liquid mixtures by non- 
equilibrium molecular dynamics, Phys. Ret,. A 35:5156-5166 (1987). 

8. H. J. Kreuzer, Nonequilibrium Thermodynamics and its Statistical Fotmdations (Clarendon, 
Oxford, 1981). 

9. J. Meixner, Zur Thermodynamik der irreversiblen Prozesse, Z. Phys. Chem. B 53:235-263 
(1941). 

10. J. Meixner, Zur Thermodynamik der irreversiblen Prozesse in Gasen mit chemisch 
reagierenden, dissozierenden und anregbaren Komponenten, Ann. Phys. (Leipzig) 
43:244-270 ( 1943 ). 

11. J. M. Haile, Molecular Dynamics Simulations. Elemental T Methods (Wiley, New York, 
1992). 

12. J. Orban and A. Bellemans, Velocity-inversion and irreversibility in a dilute gas of hard 
disks, Phys. Lett. 24A:620-621 (1967). 

13. H. Eyring and E. Eyring, Modern Chemical Kinetics (Rheinhold, New York, 1963). 
14. J. Goodisman, Electrochemistry: Theoretical Foundations (Wiley-Interscience, New York, 

1987). 
15. K. S. Fcrland, T. Fcrland, and S. K. Ratkje, h'ret,ersible Thermodynamics. Theory and 

Applications (Wiley, Chichester, England, 1988). 



494 Hafskjold and Ratkje 

16. T. L. Hill, On the one-dimensional steady-state Ising problem, J'. Chem. Phys. 
76:1122-1127 (1982). 

17. S. R. Caplan and A. Essig, Bioenergetics and Linear Nonequilibrium Thermodynamics. The 
Steady State (Harvard University Press, Cambridge, Massachusetts, 1983). 

18. K. D. Garlid, A. D. Beavis, and S. K. Ratkje, On the nature of ion leaks in energy- 
transducing membranes, Biochim. Biophys. Acta 976:109-120 (1989). 

19. T. Ikeshoji and B. Hafskjold, Nonequilibrium molecular dynamics calculation of heat 
conduction in liquid and through liquid-gas interface, Mol. Phys. (1993), in press. 

20. B. Hafskjold, T. Ikeshoji, and S. K. Ratkje, On the molecular mechanism of thermal 
diffusion in liquids, MoL Phys. (1993), in press. 

21. R. Haase, Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, 
Massachusetts, 1969). 

22. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic 
Press, London, 1990). 

23. P. Sindzingre, C. Massobrio, and G. Ciccotti, Calculation of partial enthalpies of an 
argon-krypton mixture by NPT molecular dynamics, Chem. Phys. 129:213-224 (1989). 

24. B. L. Holian and D. J. Evans, Shear viscosities away from the melting line: A comparison 
of equilibrium and nonequilibrium molecular dynamics, J. Chem. Phys. 78:5147 (1983). 

25. J. M. Kincaid, X. Li, and B. Hafskjold, Nonequilibrium molecular dynamics calculation 
of the thermal diffusion factor, Fluid Phase Equilib. 76:113 (1992). 

26. J. M. Kincaid and B. Hafskjold, Thermal diffusion factors for the Lennard-Jones/spline 
system, Mol. Phys., submitted. 

27. T. Ikeshoji, private communication. 
28. X. Li, Ion transport in solid electrolytes studied by molecular dynamics simulations, Ph.D. 

Thesis no. 57, University of Trondheim, The Norwegian Institute of Technology. 


